## C<sub>3</sub>H<sub>9</sub>OS<sup>+</sup>.ClO<sub>4</sub><sup>-</sup>

1516

| $\Delta \rho_{\rm max} = 0.575 \ {\rm e} \ {\rm \AA}^{-3}$  |
|-------------------------------------------------------------|
| $\Delta \rho_{\rm min} = -0.245 \ {\rm e} \ {\rm \AA}^{-3}$ |
| Extinction correction:                                      |
| Stout & Jensen (1968)                                       |
| Extinction coefficient:                                     |
| $2.7496 \times 10^{-6}$                                     |
| Atomic scattering factors                                   |
| from International Tables                                   |
| for X-ray Crystallography                                   |
| (1974, Vol. IV)                                             |
|                                                             |

# Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>)

|               | Beq         | $=(4/3)\Sigma_i\Sigma_j\beta_i$ | ij <b>a</b> i.aj. |           |
|---------------|-------------|---------------------------------|-------------------|-----------|
|               | x           | у                               | z                 | Beg       |
| S             | 0.27908 (7) | 1/2—x                           | 0.61369 (9)       | 3.187 (5) |
| 0             | 0.2124 (1)  | 1/2 - x                         | 0.4577 (3)        | 5.82 (3)  |
| C(1)          | 0.2467 (2)  | 1/2 - x                         | 0.8895 (5)        | 4.45 (3)  |
| C(2)          | 0.4266 (2)  | 0.2439 (2)                      | 0.5827 (3)        | 4.48 (4)  |
| Cl(1)         | 0           | 0                               | 0                 | 3.709 (9) |
| Cl(2)         | 0           | 1/2                             | 0.9136(1)         | 3.67(1)   |
| <b>O</b> (10) | 0.0999 (1)  | 0.0129 (2)                      | 0.1289 (3)        | 8.55 (4)  |
| O(20)         | 0.0534 (3)  | 1/2 - x                         | 1.0922 (9)        | 10.38 (9) |
| O(21)         | 0.0403 (4)  | 1/2 - x                         | 0.712(1)          | 11.7 (1)  |
| O(22)         | -0.0188 (3) | 0.3794 (2)                      | 0.9165 (6)        | 7.63 (9)  |

#### Table 2. Selected geometric parameters (Å, °)

|                              | -         | -                 | •          |
|------------------------------|-----------|-------------------|------------|
| <b>Cl</b> (1)— <b>O</b> (10) | 1.402 (2) | SO                | 1.439 (2)  |
| Cl(2)—O(20)                  | 1.385 (5) | SC(1)             | 1.739 (3)  |
| O(20)…O(21)                  | 2.292 (8) | S-C(2)            | 1.742 (2)  |
| O(20)…O(22)                  | 2.314 (4) | OC(1)             | 2.653 (3)  |
| Cl(2)—O(21)                  | 1.379 (5) | OC(2)             | 2.646 (2)  |
| Cl(2)—O(22)                  | 1.417 (3) | C(1)C(2)          | 2.786 (3)  |
| O(21)…O(22)                  | 2.249 (4) |                   |            |
| O(10)—Cl(1)—O(10)            | 113.0 (2) | O(21)—Cl(2)—O(22) | 107.1 (2)  |
| O(10)-Cl(1)-O(10)            | 107.7 (1) | OSC(1)            | 112.82 (9) |
| O(20)—Cl(2)—O(21)            | 112.1 (2) | OSC(2)            | 112.13 (9  |
| O(20)—Cl(2)—O(22)            | 111.3 (2) | C(1)—S—C(2)       | 106.34 (9  |
|                              |           |                   |            |

Systematic absences, 0k0 (k = 2n) and h00 (h = 2n), indicated space group  $P\bar{4}2_1m$  (No. 113) or  $P42_12$  (No. 90). Intensity data were corrected for decay and Lorentz-polarization effects. Direct methods (*MULTAN77*; Main, Lessinger, Woolfson, Germain & Declercq, 1977) were used for structure determination in  $P\bar{4}2_1m$ . H atoms were located by difference Fourier synthesis. Anisotropic full-matrix least-squares refinement was performed for non-H atoms, isotropic for H atoms. *SDP* (Enraf-Nonius, 1977) was used for all calculations on a VAX 730 computer.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: DU1067). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Brauer, C. de, Jannin, M., Puget, R. & Perret, R. (1991). Acta Cryst. C47, 2231-2232.
- Coulder, C. L., Gantzel, P. K. & McCullough, J. D. (1963). Acta Cryst. 16, 676-681.
- Enraf-Nonius (1979). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

- Jannin, M., Puget, R., de Brauer, C. & Perret, R. (1991a). Acta Cryst. C47, 1687-1689.
- Jannin, M., Puget, R., de Brauer, C. & Perret, R. (1991b). Acta Cryst. C47, 2228-2229.
- Jannin, M., Puget, R., de Brauer, C. & Perret, R. (1991c). Acta Cryst. C47, 2229-2230.
- Jannin, M., Puget, R., de Brauer, C. & Perret, R. (1993). Acta Cryst. C49, 749-751.
- Main, P., Lessinger, L., Woolfson, M. M., Germain, G. & Declercq, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Puget, R., Jannin, M., de Brauer, C. & Perret, R. (1991). Acta Cryst. C47, 1803-1805.
- Puget, R., Jannin, M., Perret, R. & de Brauer, C. (1991). Acta Cryst. C47, 2232-2234.
- Stout, G. H. & Jensen, L. M. (1968). In X-ray Structure Determination. New York: Macmillan.

Acta Cryst. (1994). C50, 1516-1519

# 2,4,6-Triphenylcyanobenzene and 2,4,6-Triphenylnitrobenzene

#### **ROMANA ANULEWICZ\***

Department of Chemistry, University of Warsaw, ul.Pasteura 1, 02-093 Warsaw, Poland

BARBARA PNIEWSKA

Department of Chemistry, Agricultural and Teachers University of Siedlce, ul.3-Maja 54, 08-110 Siedlce, Poland

#### PIOTR MILART

Department of Chemistry, Jagiellonian University, ul.Ingardena 3, 30-060 Cracow, Poland

(Received 22 June 1993; accepted 11 November 1993)

#### Abstract

The structures of the title compounds, the cyano derivative  $C_{25}H_{17}N$  (TPCB; 2,4,6-triphenylbenzonitrile) and the nitro derivative  $C_{24}H_{17}NO_2$  (TPNB), have been determined. In the two symmetry independent molecules of TPNB the nitro group is twisted by almost the same amount, 64 and 65°.

## Comment

In a continuation of our studies of sterically affected chemical species (Krygowski, Anulewicz, Daniluk & Drapala, 1990; Wozniak, Krygowski, Kariuki, Jones & Grech, 1990) we have investigated 2,4,6-triphenylcyanobenzene (TPCB) and 2,4,6-triphenylnitrobenzene (TPNB). These two derivatives of 1,3,5-triphenylbenzene (Farag, 1954; Shekata, 1959; Lin & Williams, 1975) are convenient examples to use for studying weak steric interactions between a central ring and a phenyl ring at the 4 position, and slightly stronger interactions between a central ring and phenyl substituents at positions 2 and 6 when additional interactions with the substituent at position 1 also take place.



Estimation of the aromaticity index HOMA (Krygowski, 1993; Krygowski & Kruszewski, 1972; Gdaniec, Turowska-Tyrk & Krygowski, 1989) for these geometries revealed that the rings in the three title molecules (two independent TPNB molecules) have HOMA < 0.943, indicating only a slight loss of aromatic character. Endocyclic bond angles do not differ significantly between respective positions. In all three molecules only the exocyclic angles C21-C2-C1 and C21-C2-C3 differ significantly. The values of  $\Delta \left[\varphi(C21-C2-C1) - \varphi(C21-C2-C3)\right]$ , and similarly for other positions] are 4.2 and 3.0 for TPCB and 2.2, 2.7, 4.1 and 5.1 for TCNB. These values indicate relatively strong overcrowding in this region which can be attributed to the presence of NO<sub>2</sub> or CN substituents.



Fig. 1. The molecular structure of TPCN showing the atomnumbering scheme. The H atoms are shown but not labelled.



Fig. 2. The molecular structure of TPNB showing the atomnumbering scheme. The symmetry independent molecules (1) and (2) are distinguished in Table 2 by addition of 1 and 2, respectively, to the atomic labelling.

## Experimental TPCB

Crystal data

| C25H17N                         |  |
|---------------------------------|--|
| $M_r = 331.4$                   |  |
| Monoclinic                      |  |
| $P2_1/c$                        |  |
| a = 4.096 (2) Å                 |  |
| b = 11.558 (5)  Å               |  |
| c = 37.250 (15)  Å              |  |
| $\beta = 99.15 (3)^{\circ}$     |  |
| $V = 1741.1 \text{ Å}^3$        |  |
| Z = 4                           |  |
| $D_x = 1.264 \text{ Mg m}^{-3}$ |  |

#### Data collection

KM-4 Kuma Diffraction diffractometer  $\omega/2\theta$  scans Absorption correction: none 2674 measured reflections 2491 independent reflections 2099 observed reflections  $[F_o \ge 3\sigma(F_o)]$ 

#### Refinement

Refinement on F R = 0.0579 wR = 0.0577 S = 3.4882099 reflections 252 parameters H atoms refined isotropically  $w = 1/[\sigma^2(F) + 0.0001F^2]$  Cu  $K\alpha$  radiation  $\lambda = 1.54178$  Å Cell parameters from 25 reflections  $\theta = 13-27^{\circ}$   $\mu = 0.524$  mm<sup>-1</sup> T = 298 K Plate  $0.30 \times 0.25 \times 0.1$  mm Pale yellow

 $R_{int} = 0.0285$   $\theta_{max} = 60^{\circ}$   $h = -4 \rightarrow 4$   $k = 0 \rightarrow 12$   $l = 0 \rightarrow 37$ 3 standard reflections monitored every 100 reflections intensity variation: 4.8%

 $(\Delta/\sigma)_{max} = 0.22$   $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$   $\Delta\rho_{min} = -0.35 \text{ e } \text{Å}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

# 1518

# C<sub>25</sub>H<sub>17</sub>N AND C<sub>24</sub>H<sub>17</sub>NO<sub>2</sub>

| TPNB                  |                                      |                             |                                                            |                      | C65            | -0.0226 (8)            | -0.0203 (2)              | 0.2920 (1)             | 0.054 (1)            |
|-----------------------|--------------------------------------|-----------------------------|------------------------------------------------------------|----------------------|----------------|------------------------|--------------------------|------------------------|----------------------|
| Crystal of            | data                                 |                             |                                                            |                      | C66            | -0.0270 (7)            | 0.0516 (2)               | 0.3219 (1)             | 0.044 (1)            |
| C. H. N               | JO                                   |                             | Mo Ko radiation                                            | <b>n</b>             | TPNB m         | olecule (1)            |                          |                        |                      |
| M = 35                | 1 4                                  |                             | $\lambda = 0.71073$ Å                                      | 1                    | N11            | 0.6313 (5)             | -0.2021 (4)              | 0.3228 (2)             | 0.058 (2)            |
| Monooli               | inio                                 |                             | $\Lambda = 0.71075 \text{ A}$                              | from 25              | 021            | 0.6781(4)<br>0.5394(4) | -0.1643(3)<br>-0.1661(3) | 0.2900 (2)             | 0.080(1)             |
| P2./a                 | une                                  |                             | cell parameters                                            | 110111 2.5           | C11            | 0.6909 (5)             | -0.2987(4)               | 0.3420 (2)             | 0.044 (2)            |
| $r_{21}/u$            |                                      |                             | $A = 75 \cdot 15^{\circ}$                                  |                      | C21            | 0.6773 (5)             | -0.3851 (4)              | 0.3137 (2)             | 0.045 (2)            |
| a = 10.0              | )]] (5) A                            |                             | $\theta = 7.3 - 13$                                        | 1                    | C31            | 0.7343 (5)             | -0.4739 (4)              | 0.3331 (2)             | 0.050(2)             |
| b = 13.1              | 163 (5) A                            |                             | $\mu = 0.075 \text{ mm}$                                   |                      | C41<br>C51     | 0.8002 (5)             | 0.4780 (4)               | 0.3787(2)<br>0.4054(2) | 0.044(2)             |
| c = 28.8              | 696 (8) A                            |                             | I = 290  K                                                 |                      | C61            | 0.7570 (5)             | -0.2990(4)               | 0.3874(2)              | 0.044 (2)            |
| $\beta = 98.1$        | $12(3)^{\circ}$                      |                             | Plate                                                      |                      | C211           | 0.6072 (6)             | -0.3821 (4)              | 0.2645 (2)             | 0.047 (2)            |
| V = 376               | 9.7 A <sup>3</sup>                   |                             | $0.35 \times 0.30 \times 0$                                | 0.20 mm              | C221           | 0.6770 (6)             | -0.4047 (4)              | 0.2280 (2)             | 0.065 (2)            |
| Z = 8                 | 2                                    |                             | Yellow                                                     |                      | C231           | 0.6116 (8)             | -0.4017 (4)              | 0.1826 (2)             | 0.078 (2)            |
| $D_x = 1.2$           | 238 Mg m <sup>-3</sup>               |                             |                                                            |                      | C241<br>C251   | 0.4///(8)              | -0.37/4(4)<br>-0.3554(4) | 0.1/36(2)              | 0.069 (2)            |
|                       |                                      |                             |                                                            |                      | C261           | 0.4724 (7)             | -0.3579(4)               | 0.2555 (2)             | 0.072 (2)            |
| Data col              | llection                             |                             |                                                            |                      | C411           | 0.8614 (6)             | -0.5743 (4)              | 0.3980 (2)             | 0.046 (2)            |
| Siemens               | P3 diffracton                        | neter                       | $\theta_{\rm max} = 25^{\circ}$                            |                      | C421           | 0.7982 (6)             | -0.6670 (4)              | 0.3889 (2)             | 0.054 (2)            |
| $\omega - 2\theta$ sc | ans                                  |                             | $h = -9 \rightarrow 9$                                     |                      | C431           | 0.8562 (7)             | -0.7562 (5)              | 0.4074 (2)             | 0.066 (2)            |
| Absorpti              | ion correction.                      | ,                           | $k = 0 \rightarrow 12$                                     |                      | C441<br>C451   | 0.9774 (7)             | -0.7530 (5)              | 0.4363 (2)             | 0.070 (2)            |
| none                  |                                      |                             | $\lambda = 0 \rightarrow 12$                               |                      | C451<br>C461   | 0.9852 (6)             | -0.5726(4)               | 0.4457(2)<br>0.4267(2) | 0.070(2)             |
| 4022 mg               | assured reflect                      | ione                        | $2 = 0 \rightarrow 27$                                     | tions                | C611           | 0.7802 (6)             | -0.2039(4)               | 0.4157 (2)             | 0.052 (2)            |
| 2520 inc              | demondent reflect                    | ions<br>actiona             | 5 stanuaru reneu                                           | 10115                | C621           | 0.7228 (6)             | -0.1904 (5)              | 0.4561 (2)             | 0.061 (2)            |
| 2722 ab               | sependent rene                       |                             | monitorea eve                                              | ry 100               | C631           | 0.7509 (7)             | -0.1033 (6)              | 0.4826 (2)             | 0.078 (2)            |
| 2/25 00               | served renecti                       | ons                         | renections                                                 |                      | C641           | 0.8373(7)              | -0.0309 (5)              | 0.4694 (3)             | 0.080 (2)            |
|                       | $\frac{1}{2} \frac{3\sigma(r_o)}{2}$ |                             | intensity varia                                            | tion: 4.6%           | C661           | 0.8943 (7)             | -0.0434(3)<br>-0.1310(5) | 0.4295 (3)             | 0.088(2)<br>0.075(2) |
| $R_{\rm int}=0.$      | 0184                                 |                             |                                                            |                      |                | 0.0004 (7)             | 0.1510 (5)               | 0.4020 (2)             | 0.075 (2)            |
| Rofinom               | ont                                  |                             |                                                            |                      | TPNB m         | (2)                    | 0 2410 (2)               | 0.0622 (2)             | 0.047 (1)            |
| перисти               | c <i>11</i> 1                        |                             |                                                            |                      | 012            | 0.4371(3)<br>0.5538(4) | 0.2410(3)<br>0.2114(3)   | 0.0623 (2)             | 0.047(1)<br>0.072(1) |
| Refinem               | ent on F                             |                             | $(\Delta/\sigma)_{\rm max} = 0.3$                          | • •                  | 022            | 0.3684 (4)             | 0.2620 (3)               | 0.0255 (1)             | 0.072(1)<br>0.062(1) |
| R = 0.07              | 724                                  |                             | $\Delta \rho_{\rm max} = 0.27 \ {\rm e}$                   | Å <sup>-3</sup>      | C12            | 0.3753 (5)             | 0.2533 (4)               | 0.1055 (1)             | 0.037 (2)            |
| wR = 0.0              | 0566                                 |                             | $\Delta \rho_{\rm min} = -0.31$                            | e Å <sup>-3</sup>    | C22            | 0.3569 (5)             | 0.1686 (4)               | 0.1325 (2)             | 0.040 (2)            |
| S = 2.53              | 3                                    |                             | Atomic scatterin                                           | g factors            | C32            | 0.2945 (5)             | 0.1844 (4)               | 0.1720 (2)             | 0.045 (2)            |
| 2723 ref              | flections                            |                             | from Internation                                           | ional Tables         | C42<br>C52     | 0.2542(5)<br>0.2783(5) | 0.2810 (4)               | 0.1846 (2)             | 0.043 (2)            |
| 522 para              | ameters                              |                             | for X-rav Crv                                              | stallography         | C62            | 0.3393 (5)             | 0.3518 (4)               | 0.1166 (2)             | 0.041(2)<br>0.038(1) |
| H atoms               | s refined isotro                     | pically                     | (1974, Vol. IV                                             | /)                   | C212           | 0.3928 (5)             | 0.0622 (4)               | 0.1205 (2)             | 0.042 (2)            |
| w = 2.17              | $729/[\sigma^2(F)]$                  | 1 5                         | (                                                          | ,                    | C222           | 0.4567 (5)             | 0.0010 (4)               | 0.1561 (2)             | 0.050 (2)            |
| + 0                   | $0.0001F^2$                          |                             |                                                            |                      | C232           | 0.4871 (6)             | -0.1002 (4)              | 0.1471 (2)             | 0.064 (2)            |
|                       |                                      |                             |                                                            |                      | C242<br>C252   | 0.4510(6)              | -0.1388 (4)              | 0.1024 (3)             | 0.0/1(2)             |
| Table 1               | Fractional                           | atomio d                    | oordinatoo and                                             | l aquinalant         | C262           | 0.3571 (5)             | 0.0218 (4)               | 0.0763 (2)             | 0.050(2)             |
| Table I               | . Tracitonal                         |                             | corainales and                                             | equivalent           | C412           | 0.1856 (5)             | 0.2951 (4)               | 0.2263 (2)             | 0.045 (2)            |
|                       | isotropic dis                        | splaceme                    | nt parameters (J                                           | A <sup>2</sup> )     | C422           | 0.1024 (5)             | 0.2197 (5)               | 0.2407 (2)             | 0.057 (2)            |
|                       | <i>U</i> =                           | $(1/3)\Sigma_{1}\Sigma_{2}$ | .Ua* a* a. a.                                              |                      | C432           | 0.0376 (6)             | 0.2337 (6)               | 0.2798 (2)             | 0.072 (2)            |
|                       | – pe O                               |                             | $j O_{ij} u_i u_j a_i a_j$ .                               |                      | C452<br>C452   | 0.0303 (7)             | 0.3223 (0)               | 0.3049 (2)             | 0.084 (2)            |
| man                   | x                                    | у                           | Ζ                                                          | $U_{eq}$             | C462           | 0.2032 (6)             | 0.3840 (4)               | 0.2525 (2)             | 0.064 (2)            |
| TPCB                  | 0 1924 (7)                           | 0 21 42 //                  | 0 2007 (1)                                                 | 0.024 (1)            | C612           | 0.3584 (6)             | 0.4425 (3)               | 0.0875 (2)             | 0.035 (1)            |
| $\alpha$              | 0.1854(7)<br>0.1561(7)               | 0.2142 (2                   | 2) 0.3887(1)<br>2) 0.4173(1)                               | 0.034(1)<br>0.035(1) | C622           | 0.4834 (5)             | 0.4690 (4)               | 0.0758 (2)             | 0.042 (2)            |
| C3                    | 0.0184 (7)                           | 0.3995 (2                   | 2) 0.4088(1)                                               | 0.037 (1)            | C632           | 0.4975 (6)             | 0.5581 (4)               | 0.0502 (2)             | 0.049 (2)            |
| C4                    | -0.0941 (7)                          | 0.4344 (2                   | 2) 0.3730 (1)                                              | 0.035 (1)            | C652           | 0.3608 (7)             | 0.0184(4)<br>0.5922(4)   | 0.0308 (2)             | 0.030(2)<br>0.049(2) |
| C5                    | -0.0700 (7)                          | 0.3541 (2                   | 2) 0.3454 (1)                                              | 0.036 (1)            | C662           | 0.2474 (6)             | 0.5040 (4)               | 0.0740 (2)             | 0.047 (2)            |
| C6                    | 0.0627 (7)                           | 0.2447 (2                   | $\begin{array}{c} 2) & 0.3524(1) \\ 0.3063(1) \end{array}$ | 0.034 (1)            |                |                        | . ,                      |                        | •                    |
| N1                    | 0.5106 (7)                           | 0.0243 (                    | 2) 0.3963(1)<br>2) 0.4025(1)                               | 0.041(1)<br>0.059(1) | Ta             | able 2. Selec          | ted geometr              | ic parameters          | : (Å, °)             |
| C21                   | 0.2789 (7)                           | 0.2624 (2                   | 2) 0.4561 (1)                                              | 0.035 (1)            |                |                        | TPCB                     | TPN                    | B                    |
| C22                   | 0.1992 (8)                           | 0.1579 (2                   | 2) 0.4712 (1)                                              | 0.044 (1)            |                |                        |                          | Molecule (1)           | Molecule (2)         |
| C23                   | 0.3114 (8)                           | 0.1346 (3                   | 3) 0.5077 (1)                                              | 0.052 (1)            | C1C7           |                        | 1.441 (4)                |                        |                      |
| C24<br>C25            | 0.5034 (9)                           | 0.2136 (3                   | $\begin{array}{c} 0.5291(1) \\ 0.5144(1) \end{array}$      | 0.057 (1)            | C/—N1<br>C1—N1 |                        | 1.140 (4)                | 1 479 (7)              | 1 479 (7)            |
| C26                   | 0.4700 (8)                           | 0.3418 (3                   | $\frac{1}{2} 0.3144(1)$                                    | 0.038(1)             | N1-01          |                        |                          | 1.479(7)               | 1.470(7)             |
| C41                   | -0.2249 (7)                          | 0.5523 (2                   | 2) 0.3648 (1)                                              | 0.035 (1)            | N1-02          |                        |                          | 1.212 (8)              | 1.214 (6)            |
| C42                   | -0.4566 (7)                          | 0.5753 (2                   | 2) 0.3339 (1)                                              | 0.040 (1)            | C1—C2          |                        | 1.408 (5)                | 1.396 (8)              | 1.388 (7)            |
| C43                   | -0.5703 (7)                          | 0.6870 (2                   | $0.3262(1) \\ 0.3262(1)$                                   | 0.046 (1)            | C1C6           |                        | 1.409 (5)                | 1.383 (8)              | 1.395 (7)            |
| C44<br>C45            | -0.4383 (8)<br>-0.2296 (8)           | 0.77760 (2                  | $\begin{array}{ccc} 0.3492(1) \\ 0.3708(1) \end{array}$    | 0.046 (1)            | C2C3           |                        | 1.380 (3)                | 1.384 (7)              | 1.392 (8)            |
| C46                   | -0.1146 (7)                          | 0.6446 (2                   | 2) 0.3873(1)                                               | 0.043 (1)            | C3C4           |                        | 1,399 (5)                | 1.389 (8)              | 1.398 (8)            |
| C61                   | 0.0795 (7)                           | 0.1648 (2                   | 2) 0.3213 (1)                                              | 0.037 (1)            | C4—C5          |                        | 1.400 (5)                | 1.393 (8)              | 1.394 (8)            |
| C62                   | 0.2013 (7)                           | 0.2059 (2                   | 2) 0.2906 (1)                                              | 0.046 (1)            | C4C41          |                        | 1.478 (3)                | 1.482 (7)              | 1.480 (8)            |
| C63                   | 0.2077 (8)                           | 0.1334 (3                   | $0.2610(1) \\ 0.2620(1)$                                   | 0.059(1)             | C5—C6          |                        | 1.385 (3)                | 1.378 (7)              | 1.392 (8)            |
| C04                   | 0.0993(9)                            | 0.0205 (3                   | ) U.262U(I)                                                | 0.062(1)             | Co-Col         |                        | 1.492 (5)                | 1.495 (8)              | 1.488 (7)            |

| C2-C1-C7      | 119.7 (3)  |           |            |
|---------------|------------|-----------|------------|
| C6C1C7        | 119.5 (3)  |           |            |
| C1-C7-N1      | 177.8 (3)  |           |            |
| NI-C1-C2      | • •        | 118.7 (5) | 119.4 (4)  |
| N1-C1-C6      |            | 118.2 (5) | 116.6 (4)  |
| 01-N1-C1      |            | 117.6 (5) | 118.2 (4)  |
| 02-N1-C1      |            | 117.9 (5) | 117.5 (4)  |
| 01-N1-02      |            | 124.6 (5) | 124.3 (5)  |
| C2-C1-C6      | 120.6 (3)  | 123.2 (5) | 123.9 (5)  |
| C1-C2-C3      | 118.5 (3)  | 116.8 (5) | 116.8 (5)  |
| C1-C2-C21     | 122.3 (3)  | 122.0 (5) | 124.4 (5)  |
| C3—C2—C21     | 119.1 (3)  | 121.3 (5) | 118.7 (5)  |
| C2-C3-C4      | 122.5 (3)  | 122.0 (5) | 121.9 (5)  |
| C3—C4—C5      | 117.2 (3)  | 118.8 (5) | 118.6 (5)  |
| C3-C4-C41     | 121.1 (3)  | 120.4 (5) | 120.7 (5)  |
| C5-C4-C41     | 121.7 (3)  | 120.8 (5) | 120.7 (5)  |
| C4C5C6        | 122.6(3)   | 121.3 (5) | 121.8 (5)  |
| C1-C6-C5      | 118.5 (3)  | 118.0(5)  | 116.9 (5)  |
| C1-C6-C61     | 122.6 (3)  | 122.2 (5) | 123.9 (5)  |
| C5-C6-C61     | 119.0 (3)  | 119.7 (5) | 119.2 (5)  |
| C1_C2_C21_C22 | -49.1 (4)  | 117.7 (6) | 137.0 (6)  |
| C1—C2—C21—C26 | 132.5 (3)  | -63.1 (8) | -47.1 (8)  |
| C3—C2—C21—C22 | 132.8 (3)  | -61.1 (8) | -46.5(7)   |
| C3—C2—C21—C26 | -45.6(3)   | 118.2 (6) | 129.4 (6)  |
| C3-C4-C41-C42 | -152.7 (3) | -40.4 (8) | -31.5 (8)  |
| C3-C4C41C46   | 28.9 (4)   | 140.5 (6) | 148.0 (5)  |
| C5-C4-C41-C42 | 28.9 (3)   | 141.3 (6) | 147.6 (6)  |
| C5-C4C41-C46  | -149.6 (3) | -37.8 (8) | - 32.9 (8) |
| C1—C6—C61—C62 | -131.6(3)  | 116.6 (6) | -56.3 (8)  |
| C1-C6-C61-C66 | 49.3 (4)   | -67.1 (8) | 126.9 (6)  |
| C5—C6—C61—C62 | 46.9 (3)   | -68.0(8)  | 125.8 (6)  |
| C5—C6—C61—C66 | -132.1 (3) | 108.3 (7) | -51.0(7)   |

For both compounds, the data were corrected for Lorentz and polarization effects but not for absorption. The structures were solved by direct methods. Full-matrix least-squares refinement minimizing  $\Sigma w(|F_o|-|F_c|)^2$  was employed. Non-H atoms were refined anisotropically and all H atoms were placed in calculated positions and refined with isotropic displacement parameters. Calculations were carried out using the *SHELX*76 and *SHELX*386 programs (Sheldrick, 1976, 1990). The final geometry calculations were performed with the *CSU* program (Vickovic, 1988).

We thank Professor T. M. Krygowski for helpful discussions.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1051). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Farag, M. S. (1954). Acta Cryst. 7, 117-125.
- Gdaniec, M., Turowska-Tyrk, I. & Krygowski, T. M. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 613-616.
- Krygowski, T. M. (1993). J. Chem. Inf. Comput. Sci. 33, 70-78.
- Krygowski, T. M., Anulewicz, R., Daniluk, T. & Drapala, T. (1990). Struct. Chem. 1, 371-378.
- Krygowski, T. M. & Kruszewski, J. (1972). Tetrahedron Lett. pp. 3839-3843.
- Lin, Y. C. & Williams, D. E. (1975). Acta Cryst. B31, 318-322.
- Shekata, M. (1959). J. Phys. Soc. Jpn, 14, 755-762.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-478.
- Vickovic, I. (1988). J. Appl. Cryst. 21, 987-990.
- Wozniak, K., Krygowski, T. M., Kariuki, B., Jones, W. & Grech, E. (1990). J. Mol. Struct. 240, 111–118.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1994). C50, 1519-1522

# 5,6-Dihydro-5,6-diphenyl-1,3-dithiolo[4,5-b]-[1,4]dithiine-2-thione (DHPT-DTT), $C_{17}H_{12}S_5$

FANG QI AND YU WEN-TAO

Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

#### XU JIAN-HUA

Department of Chemistry, Nanjing University, Nanjing 210008, People's Republic of China

LEI HONG AND JIANG MIN-HUA

Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

(Received 26 July 1993; accepted 24 December 1993)

## Abstract

The DHPT-DTT molecule contains a conjugated 4,5-dimercapto-1,3-dithiole-2-thione plane and two phenyl planes, all of which are approximately perpendicular to one another. The crystal packing is stabilized by an S…S interaction between pairs of neighbouring molecules, which may account for the rather high thermal stability of the crystal.

#### Comment

The ring closure of 4,5-dimercapto-1,3-dithiole-2thione (dmit) with a dihalohydrocarbon to produce a suitable  $\pi$ -donor precursor is the first step of a three-stage procedure for the preparation of dmitbased organic electric conductors, such as the well known (ET)<sub>2</sub>X type of charge-transfer salts, where  $X^-$  is a charge-compensating monovalent anion (Williams *et al.*, 1987; Bryce, 1991).



During attempts to prepare new organic superconductors, many smaller precursors of dmit-based  $\pi$  donors have been synthesized, some of which rep-